- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0000000004000000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Wascher, Matthew (4)
-
Klaus, Colin (3)
-
Kenah, Eben (2)
-
KhudaBukhsh, Wasiur R. (2)
-
Rempała, Grzegorz A. (2)
-
Bastian, Caleb Deen (1)
-
Chatterjee, Shirshendu (1)
-
KhudaBukhsh, Wasiur R (1)
-
Rempała, Grzegorz A (1)
-
Root, Elisabeth (1)
-
Sahai, Saumya Yashmohini (1)
-
Sivakoff, David (1)
-
Tien, Joseph H (1)
-
Tien, Joseph H. (1)
-
Weir, Mark H. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Chatterjee, Shirshendu; Sivakoff, David; Wascher, Matthew (, Electronic Journal of Probability)
-
Klaus, Colin; Wascher, Matthew; KhudaBukhsh, Wasiur R; Tien, Joseph H; Rempała, Grzegorz A; Kenah, Eben (, The Lancet Infectious Diseases)
-
Klaus, Colin; Wascher, Matthew; KhudaBukhsh, Wasiur R.; Rempała, Grzegorz A. (, Mathematical Biosciences and Engineering)The Dynamical Survival Analysis (DSA) is a framework for modeling epidemics based on mean field dynamics applied to individual (agent) level history of infection and recovery. Recently, the Dynamical Survival Analysis (DSA) method has been shown to be an effective tool in analyzing complex non-Markovian epidemic processes that are otherwise difficult to handle using standard methods. One of the advantages of Dynamical Survival Analysis (DSA) is its representation of typical epidemic data in a simple although not explicit form that involves solutions of certain differential equations. In this work we describe how a complex non-Markovian Dynamical Survival Analysis (DSA) model may be applied to a specific data set with the help of appropriate numerical and statistical schemes. The ideas are illustrated with a data example of the COVID-19 epidemic in Ohio.more » « less
An official website of the United States government
